Problem 29.9

The velocity of a charge moving in a B-field is:

$$\vec{v} = 10^7 \hat{k} \text{ (m/s)}$$

The force on the charge is:

$$\vec{F} = m\vec{a}$$
= $(1.67 \times 10^{-27} \text{ kg})(1 \times 10^{13} \text{ m/s}^2)\hat{i}$
= $(3.34 \times 10^{-14} \text{ N})\hat{i}$

So what must B's direction be to get this force?

What we need is to evaluate the directional components of the relationship:

$$\vec{F} = q\vec{v}x\vec{B}$$

$$\Rightarrow \hat{i} = (-\hat{k})x(?)$$

$$\Rightarrow ? = (-\hat{j})$$

1.)

The B-fld magnitude will be:

$$|\vec{F}| = q|\vec{v}| |\vec{B}| \sin \theta = m|\vec{a}|$$

$$\Rightarrow B = \frac{m|\vec{a}|}{q|\vec{v}| \sin 90^{\circ}}$$

$$\Rightarrow B = \frac{(1.67 \times 10^{-27} \text{ kg})(2 \times 10^{13} \text{ m/s}^{2})}{(1.6 \times 10^{-19} \text{ C})(1 \times 10^{7} \text{ m/s}) \sin 90^{\circ}}$$

$$\Rightarrow = 2.09 \times 10^{-2} \text{ T}$$

In short:

$$\vec{F} = (2.09 \times 10^{-2} \text{ T})(-\hat{j})$$